

Method CT4Rec: Simple yet Effective Consistency Training for Sequential Recommendation Task

Advisor : Jia-Ling, Koh Speaker : Siao You, Chen Source : KDD 2023 Date : 2023/12/05

Outline

- Introduction
- Related Work
- Method
- Experiment
- Conclusion

Sequential Recommendation

Consistency Training - Smoothness Assumption

- Similar x has the same \hat{y}
- x^1 and x^2 have the same label x^1 and x^3 have different labels

Outline

- Introduction
- Related Work
- Method
- Experiment
- Conclusion

R-Drop

- Regularization techniques are indispensable modules to prevent model overfitting.
- The Dropout technology has become the most widely used regularization technology.
- The randomness introduced by Dropout causes non negligible inconsistency.

Outline

- Introduction
- Related Work
- Method
- Experiment
- Conclusion

Notations

 $\mathcal{U} = (u_1, u_2, ..., u_{|\mathcal{U}|})$ denote a set of users

 $\mathcal{V} = (v_1, v_2, ..., v_{|\mathcal{V}|})$ denote a set of items

The sequence for user $u \in \mathcal{U}$ is denoted as $s_u = (v_1^{(u)}, v_2^{(u)}, ..., v_t^{(u)}, ..., v_{|s_u|}^{(u)})$

The task of SR is to predict the probability of all alternative items to be interacted by user u at time step $|\mathbf{S}_u| + 1$

$$P(v_{|s_u|+1}^{(u)} = v|s_u)$$

Kullback-Leibler (KL) Divergence

CT4Rec Model Structure

CT4Rec - Regularized Dropout (RD) Loss

• Constrain the output space from dropout

$$\mathcal{L}_{RD}(\boldsymbol{s}_{\boldsymbol{u},\boldsymbol{t}};\omega) = \frac{1}{2} (\mathcal{D}_{KL}(\mathcal{P}(\boldsymbol{s}_{\boldsymbol{u},\boldsymbol{t}}^{d_1};\omega) || \mathcal{P}(\boldsymbol{s}_{\boldsymbol{u},\boldsymbol{t}}^{d_2};\omega)) + \mathcal{D}_{KL}(\mathcal{P}(\boldsymbol{s}_{\boldsymbol{u},\boldsymbol{t}}^{d_2};\omega) || \mathcal{P}(\boldsymbol{s}_{\boldsymbol{u},\boldsymbol{t}}^{d_1};\omega)))$$
(3)

CT4Rec - Distributed Regularization (DR) Loss

Regularize the representation space softmax softmax S S S S S S $\mathcal{P}_{u}(\boldsymbol{s}_{\boldsymbol{u}_{1}}^{\boldsymbol{d}_{j}};\omega) = softmax(sim(\boldsymbol{s}_{\boldsymbol{u}_{1}}^{\boldsymbol{d}_{j}},\boldsymbol{s}_{\boldsymbol{u}_{2}}^{\boldsymbol{d}_{j}}),...,sim(\boldsymbol{s}_{\boldsymbol{u}_{1}}^{\boldsymbol{d}_{j}},\boldsymbol{s}_{\boldsymbol{u}_{n}}^{\boldsymbol{d}_{j}})) \quad (4)$ 0 \bigcirc $\mathcal{L}_{DR}(\boldsymbol{s_{u}};\omega) = \frac{1}{2}(\mathcal{D}_{KL}(\mathcal{P}_{u}(\boldsymbol{s_{u}^{d_{1}}};\omega)||\mathcal{P}_{u}(\boldsymbol{s_{u}^{d_{2}}};\omega))$ 0 \bigcirc \bigcirc (5) 0 0 0 + $\mathcal{D}_{KI}(\mathcal{P}_{\boldsymbol{u}}(\boldsymbol{s}_{\boldsymbol{u}}^{d_2};\omega)||\mathcal{P}_{\boldsymbol{u}}(\boldsymbol{s}_{\boldsymbol{u}}^{d_1};\omega)))$ \bigcirc \bigcirc 0 0 $s_u^{d_1}$ $s_u^{d_2}$ $s_{u_i}^{d_j}$ $sim(s_{u_1}^{d_j}, s_{u_i}^{d_j})$ 11

 $\mathcal{D}_{KL}(\mathcal{P}_u(s_{u_1}^{d_1};\omega)||\mathcal{P}_u(s_{u_1}^{d_2};\omega))$

CT4Rec - Basic & Final Loss

Backbone: SASRec*

$$\mathcal{P}(s_{u,t};\omega) = \frac{exp(s_{u,t}v_{t+1}^+)}{exp(s_{u,t}v_{t+1}^+) + \sum_{v_{t+1}^- \in \mathcal{V}} exp(s_{u,t}v_{t+1}^-)} \qquad (1)$$

$$\mathcal{L}_{basic}(s_{u,t};\omega) = -log\mathcal{P}(s_{u,t};\omega) \qquad (2)$$

CT4Rec

$$\mathcal{L}_{basic}(s_{u,t};\omega) = -\frac{1}{2}(log\mathcal{P}(s_{u,t}^{d_1};\omega) + log\mathcal{P}(s_{u,t}^{d_2};\omega)) \qquad (6)$$
$$\mathcal{L}_{final} = \mathcal{L}_{basic} + \alpha \mathcal{L}_{RD} + \beta \mathcal{L}_{DR} \qquad (7)$$

Outline

- Introduction
- Related Work
- Method
- Experiment
- Conclusion

Da	Datasets Average action per user									
	Dataset	#users	#items	#actions	avg.	density				
	Beauty	52,024	57,289	0.4M	7.6	0.01%				
	Sports	25,598	18,357	0.3M	8.3	0.05%				
	Yelp	30,431	20,033	0.3M	10.4	0.05%				
	WeChat	749,452	211,004	9.5M	12.7	0.006%				

- Beauty & Sports: subsets of Amazon dataset's beauty and sports categories
- Yelp: business recommendation from the Yelp platform
- WeChat: new large-scale dataset collected from PC-WeChat Top Stories

Baselines

Baselines

Data Augmentation

Evaluation Metric

• NDCG@k

$$NDCG = rac{1}{N} \sum rac{1}{\log{(p_i\,+\,1)}}$$

• HR@k

$$HR = rac{1}{N} \sum hits(i)$$

Experimental Result

		Back	kbone	RNN	Atter	ntion (Contrastive							
Datasets	Metric	SASRec	SASRec*	GRU4Rec	BERT4Rec	TiSASRec	CL4SRec	CT4Rec	Dataset	#users	#items	#actions	avg.	de
	HR@5	0.2109	0.2194	0.1179	0.0860	0.2024	0.2275	0.2556	Beauty	52,024	57,289	0.4M	7.6	0.
	HR@10	0.2759	0.2748	0.1582	0.1357	0.2746	0.2896	0.3200	Sports	25,598	18,357	0.3M	8.3	0.
Decutry	HR@20	0.3546	0.3392	0.2146	0.2036	0.3508	0.3624	0.3891	Yelp	30,431	20,033	0.3M	10.4	0.
Deauty	NDCG@5	0.1523	0.1661	0.0869	0.0572	0.1413	0.1701	0.1924	WeChat	749,452	211,004	9.5M	12.7	0.0
	NDCG@10	0.1733	0.1840	0.1000	0.0732	0.1646	0.1901	0.2132						
	NDCG@20	0.1932	0.2003	0.1141	0.0903	0.1839	0.2085	0.2307						
	HR@5	0.1912	0.1966	0.0961	0.0766	0.1703	0.2084	0.2196	_					
	HR@10	0.2747	0.2683	0.1499	0.1267	0.2456	0.2834	0.3010						
Sports	HR@20	0.3751	0.3547	0.2295	0.2055	0.3352	0.3721	0.3950						
sports	NDCG@5	0.1289	0.1398	0.0631	0.0494	0.1159	0.1488	0.1556						
	NDCG@10	0.1558	0.1629	0.0804	0.0654	0.1402	0.1729	0.1817						
	NDCG@20	0.1811	0.1847	0.1003	0.0852	0.1628	0.1953	0.2055						
	HR@5	0.2834	0.3216	0.1457	0.1567	0.2935	0.3173	0.3462	-					
	HR@10	0.4221	0.4469	0.2546	0.2623	0.4257	0.4451	0.4784						
Voln	HR@20	0.5975	0.5989	0.4257	0.4312	0.5839	0.5993	0.6309						
Terp	NDCG@5	0.1889	0.2283	0.0890	0.0996	0.2009	0.2236	0.2443						
	NDCG@10	0.2335	0.2687	0.1239	0.1336	0.2435	0.2647	0.2869						
	NDCG@20	0.2778	0.3070	0.1668	0.1759	0.2834	0.3036	0.3253						
	HR@5	0.2756	0.3069	0.1836	0.1943	0.3193	0.3105	0.3406						
	HR@10	0.4103	0.4366	0.2231	0.2247	0.4406	0.4511	0.4861						
WeChat	HR@20	0.5291	0.5484	0.2884	0.2907	0.5539	0.5507	0.5979						
weenat	NDCG@5	0.1948	0.2131	0.1272	0.1266	0.2036	0.2195	0.2361						
	NDCG@10	0.2357	0.2743	0.1447	0.1394	0.2615	0.2827	0.3057						1
	NDCG@20	0.2869	0.3013	0.1693	0.1526	0.2957	0.3089	0.3314						

Experimental Result

Datasets	Metric	GRU4Rec
	HR@5	0.1179
	HR@10	0.1582
Decester	HR@20	0.2146
Beauty	NDCG@5	0.0869
0.01	NDCG@10	0.1000
	NDCG@20	0.1141
	HR@5	0.0961
	HR@10	0.1499
Sports	HR@20	0.2295
sports	NDCG@5	0.0631
0.05	NDCG@10	0.0804
	NDCG@20	0.1003
	HR@5	0.1457
	HR@10	0.2546
Voln	HR@20	0.4257
leip	NDCG@5	0.0890
	NDCG@10	0.1239
	NDCG@20	0.1668
	HR@5	0.1836
	HR@10	0.2231
WaChat	HR@20	0.2884
wechat	NDCG@5	0.1272
	NDCG@10	0.1447
	NDCG@20	0.1693

• RNN-based methods usually exhibit worse performance for the data sparsity setting.

Experimental Result

Datasets	Metric	SASRec	SASRec*	CT4Rec	Improv.	Improv.*
	HR@5	0.2109	0.2194	0.2556	21.19%	16.50%
	HR@10	0.2759	0.2748	0.3200	15.98%	16.45%
Decutry	HR@20	0.3546	0.3392	0.3891	9.73%	14.71%
beauty	NDCG@5	0.1523	0.1661	0.1924	26.33%	15.83%
	NDCG@10	0.1733	0.1840	0.2132	23.02%	15.87%
	NDCG@20	0.1932	0.2003	0.2307	19.41%	15.18%
	HR@5	0.1912	0.1966	0.2196	14.85%	11.70%
	HR@10	0.2747	0.2683	0.3010	9.57%	12.19%
Cuanta	HR@20	0.3751	0.3547	0.3950	5.31%	11.36%
sports	NDCG@5	0.1289	0.1398	0.1556	20.71%	11.30%
	NDCG@10	0.1558	0.1629	0.1817	16.62%	11.54%
	NDCG@20	0.1811	0.1847	0.2055	13.47%	11.26%
	HR@5	0.2834	0.3216	0.3462	22.16%	7.65%
	HR@10	0.4221	0.4469	0.4784	13.34%	7.05%
Valn	HR@20	0.5975	0.5989	0.6309	5.59%	5.34%
leip	NDCG@5	0.1889	0.2283	0.2443	29.33%	7.01%
	NDCG@10	0.2335	0.2687	0.2869	22.87%	6.77%
	NDCG@20	0.2778	0.3070	0.3253	17.10%	5.96%
	HR@5	0.2756	0.3069	0.3406	25.58%	10.98%
	HR@10	0.4103	0.4366	0.4861	18.47%	11.34%
WeChat	HR@20	0.5291	0.5484	0.5979	13.00%	9.03%
wechat	NDCG@5	0.1948	0.2131	0.2361	21.20%	10.79%
	NDCG@10	0.2357	0.2743	0.3057	29.70%	11.40%
	NDCG@20	0.2869	0.3013	0.3314	15.51%	9.99%

Dataset	#users	#items	#actions	avg.	density
Beauty	52,024	57,289	0.4M	7.6	0.01%
Sports	25,598	18,357	0.3M	8.3	0.05%
Yelp	30,431	20,033	0.3M	10.4	0.05%
WeChat	749,452	211,004	9.5M	12.7	0.006%

L2/ Cosine Regularization

$$\ell_i = -\log \frac{e^{\sin(\mathbf{h}_i, \mathbf{h}_i^+)/\tau}}{\sum_{j=1}^N e^{\sin(\mathbf{h}_i, \mathbf{h}_j^+)/\tau}}, \qquad (1)$$

$$L2(x,y) \,=\, \sqrt{\sum_i \left(x_i\,-\,y_i
ight)^2}$$

$$sim(h_1,h_2) \,=\, h_1\cdot h_2 \;\implies rac{h_1\cdot h_2}{||h_1||\cdot ||h_2||}$$

Ablation Study

Extension to Data Augmentation

• Replace dropout with data augmentation method

Aug.[53]	Metrics	SASRec	SASRec*	+L2	+Cos	+DR	+RD	+CT4Rec	Improv.	Improv.*
5	HR@10	0.2759	0.2748	0.2867	0.2856	0.2905	0.2857	0.3076	11.49%	11.94%
Doordor	HR@20	0.3546	0.3392	0.3552	0.3542	0.3558	0.3546	0.3776	6.49%	11.32%
Reorder	NDCG@10	0.1523	0.1661	0.1892	0.1900	0.1954	0.1899	0.2047	34.41%	23.24%
	NDCG@20	0.1932	0.2003	0.2064	0.2073	0.2119	0.2072	0.2224	15.11%	11.03%
	HR@10	0.2759	0.2748	0.2831	0.2898	0.2892	0.2891	0.3140	13.81%	14.26%
Mode	HR@20	0.3546	0.3392	0.3484	0.3553	0.3542	0.3609	0.3868	9.08%	14.03%
Mask	NDCG@10	0.1523	0.1661	0.1879	0.1941	0.1948	0.1886	0.2061	35.33%	24.08%
	NDCG@20	0.1932	0.2003	0.2044	0.2106	0.2111	0.2067	0.2244	16.15%	12.03%

Training and Cost Analysis

• Better final optimum & less convergence time

Outline

- Introduction
- Related Work
- Method
- Experiment
- Conclusion

Conclusion

- Introduce a top-performed regularization in the output space
- Design a novel consistency training term in the representation space
- Extensive experiment and analysis demonstrate its effectiveness, efficiency, etc.
- Further exploration on CTR prediction task

Further... CTR Prediction

• Definition:

Click-through rate prediction is the task of predicting the likelihood that something on a website (or anything else) will be clicked.

WeChat-Vide	0	WeChat-Article				
Model	AUC	Model	AUC			
LR	0.7569	LR	0.7401			
FM	0.7608	FM	0.7465			
Wide&Deep	0.7695	Wide&Deep	0.7538			
DeepFM	0.7719	DeepFM	0.7552			
AutoInt	0.7703	AutoInt	0.7519			
xDeepFM	0.7738	xDeepFM	0.7560			
CT4CTR	0.7766	CT4CTR	0.7593			